# Copyright (c) "Neo4j"
# Neo4j Sweden AB [https://neo4j.com]
# #
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# #
# https://www.apache.org/licenses/LICENSE-2.0
# #
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import json
import neo4j
import logging
import warnings
from typing import Any, Dict, List, Literal, Optional, Tuple, Union, Sequence, Callable
from pathlib import Path
from pydantic import (
BaseModel,
PrivateAttr,
model_validator,
validate_call,
ConfigDict,
ValidationError,
Field,
)
from typing_extensions import Self
from neo4j_graphrag.exceptions import (
SchemaValidationError,
LLMGenerationError,
SchemaExtractionError,
)
from neo4j_graphrag.experimental.pipeline.component import Component, DataModel
from neo4j_graphrag.experimental.pipeline.types.schema import (
EntityInputType,
RelationInputType,
)
from neo4j_graphrag.generation import SchemaExtractionTemplate, PromptTemplate
from neo4j_graphrag.llm import LLMInterface
from neo4j_graphrag.utils.file_handler import FileHandler, FileFormat
from neo4j_graphrag.schema import get_structured_schema
logger = logging.getLogger(__name__)
[docs]
class PropertyType(BaseModel):
"""
Represents a property on a node or relationship in the graph.
"""
name: str
# See https://neo4j.com/docs/cypher-manual/current/values-and-types/property-structural-constructed/#property-types
type: Literal[
"BOOLEAN",
"DATE",
"DURATION",
"FLOAT",
"INTEGER",
"LIST",
"LOCAL_DATETIME",
"LOCAL_TIME",
"POINT",
"STRING",
"ZONED_DATETIME",
"ZONED_TIME",
]
description: str = ""
required: bool = False
model_config = ConfigDict(
frozen=True,
)
def default_additional_item(key: str) -> Callable[[dict[str, Any]], bool]:
def wrapper(validated_data: dict[str, Any]) -> bool:
return len(validated_data.get(key, [])) == 0
return wrapper
[docs]
class NodeType(BaseModel):
"""
Represents a possible node in the graph.
"""
label: str
description: str = ""
properties: list[PropertyType] = []
additional_properties: bool = Field(
default_factory=default_additional_item("properties")
)
@model_validator(mode="before")
@classmethod
def validate_input_if_string(cls, data: EntityInputType) -> EntityInputType:
if isinstance(data, str):
return {"label": data}
return data
@model_validator(mode="after")
def validate_additional_properties(self) -> Self:
if len(self.properties) == 0 and not self.additional_properties:
raise ValueError(
"Using `additional_properties=False` with no defined "
"properties will cause the model to be pruned during graph cleaning. "
f"Define some properties or remove this NodeType: {self}"
)
return self
def property_type_from_name(self, name: str) -> Optional[PropertyType]:
for prop in self.properties:
if prop.name == name:
return prop
return None
[docs]
class RelationshipType(BaseModel):
"""
Represents a possible relationship between nodes in the graph.
"""
label: str
description: str = ""
properties: list[PropertyType] = []
additional_properties: bool = Field(
default_factory=default_additional_item("properties")
)
@model_validator(mode="before")
@classmethod
def validate_input_if_string(cls, data: RelationInputType) -> RelationInputType:
if isinstance(data, str):
return {"label": data}
return data
@model_validator(mode="after")
def validate_additional_properties(self) -> Self:
if len(self.properties) == 0 and not self.additional_properties:
raise ValueError(
"Using `additional_properties=False` with no defined "
"properties will cause the model to be pruned during graph cleaning. "
f"Define some properties or remove this RelationshipType: {self}"
)
return self
def property_type_from_name(self, name: str) -> Optional[PropertyType]:
for prop in self.properties:
if prop.name == name:
return prop
return None
[docs]
class GraphSchema(DataModel):
"""This model represents the expected
node and relationship types in the graph.
It is used both for guiding the LLM in the entity and relation
extraction component, and for cleaning the extracted graph in a
post-processing step.
.. warning::
This model is immutable.
"""
node_types: Tuple[NodeType, ...]
relationship_types: Tuple[RelationshipType, ...] = tuple()
patterns: Tuple[Tuple[str, str, str], ...] = tuple()
additional_node_types: bool = Field(
default_factory=default_additional_item("node_types")
)
additional_relationship_types: bool = Field(
default_factory=default_additional_item("relationship_types")
)
additional_patterns: bool = Field(
default_factory=default_additional_item("patterns")
)
_node_type_index: dict[str, NodeType] = PrivateAttr()
_relationship_type_index: dict[str, RelationshipType] = PrivateAttr()
model_config = ConfigDict(
frozen=True,
)
@model_validator(mode="after")
def validate_patterns_against_node_and_rel_types(self) -> Self:
self._node_type_index = {node.label: node for node in self.node_types}
self._relationship_type_index = (
{r.label: r for r in self.relationship_types}
if self.relationship_types
else {}
)
relationship_types = self.relationship_types
patterns = self.patterns
if patterns:
if not relationship_types:
raise SchemaValidationError(
"Relationship types must also be provided when using patterns."
)
for entity1, relation, entity2 in patterns:
if entity1 not in self._node_type_index:
raise SchemaValidationError(
f"Node type '{entity1}' is not defined in the provided node_types."
)
if relation not in self._relationship_type_index:
raise SchemaValidationError(
f"Relationship type '{relation}' is not defined in the provided relationship_types."
)
if entity2 not in self._node_type_index:
raise ValueError(
f"Node type '{entity2}' is not defined in the provided node_types."
)
return self
@model_validator(mode="after")
def validate_additional_parameters(self) -> Self:
if (
self.additional_patterns is False
and self.additional_relationship_types is True
):
raise ValueError(
"`additional_relationship_types` must be set to False when using `additional_patterns=False`"
)
return self
def node_type_from_label(self, label: str) -> Optional[NodeType]:
return self._node_type_index.get(label)
def relationship_type_from_label(self, label: str) -> Optional[RelationshipType]:
return self._relationship_type_index.get(label)
@classmethod
def create_empty(cls) -> Self:
return cls(node_types=tuple())
def save(
self,
file_path: Union[str, Path],
overwrite: bool = False,
format: Optional[FileFormat] = None,
) -> None:
"""
Save the schema configuration to file.
Args:
file_path (str): The path where the schema configuration will be saved.
overwrite (bool): If set to True, existing file will be overwritten. Default to False.
format (Optional[FileFormat]): The file format to save the schema configuration into. By default, it is inferred from file_path extension.
"""
data = self.model_dump(mode="json")
file_handler = FileHandler()
file_handler.write(data, file_path, overwrite=overwrite, format=format)
def store_as_json(
self, file_path: Union[str, Path], overwrite: bool = False
) -> None:
warnings.warn(
"Use .save(..., format=FileFormat.JSON) instead.", DeprecationWarning
)
return self.save(file_path, overwrite=overwrite, format=FileFormat.JSON)
def store_as_yaml(
self, file_path: Union[str, Path], overwrite: bool = False
) -> None:
warnings.warn(
"Use .save(..., format=FileFormat.YAML) instead.", DeprecationWarning
)
return self.save(file_path, overwrite=overwrite, format=FileFormat.YAML)
@classmethod
def from_file(
cls, file_path: Union[str, Path], format: Optional[FileFormat] = None
) -> Self:
"""
Load a schema configuration from a file (either JSON or YAML).
The file format is automatically detected based on the file extension,
unless the format parameter is set.
Args:
file_path (Union[str, Path]): The path to the schema configuration file.
format (Optional[FileFormat]): The format of the schema configuration file (json or yaml).
Returns:
GraphSchema: The loaded schema configuration.
"""
file_path = Path(file_path)
file_handler = FileHandler()
try:
data = file_handler.read(file_path, format=format)
except ValueError:
raise
try:
return cls.model_validate(data)
except ValidationError as e:
raise SchemaValidationError(str(e)) from e
class BaseSchemaBuilder(Component):
async def run(self, *args: Any, **kwargs: Any) -> GraphSchema:
raise NotImplementedError()
[docs]
class SchemaBuilder(BaseSchemaBuilder):
"""
A builder class for constructing GraphSchema objects from given entities,
relations, and their interrelationships defined in a potential schema.
Example:
.. code-block:: python
from neo4j_graphrag.experimental.components.schema import (
SchemaBuilder,
NodeType,
PropertyType,
RelationshipType,
)
from neo4j_graphrag.experimental.pipeline import Pipeline
node_types = [
NodeType(
label="PERSON",
description="An individual human being.",
properties=[
PropertyType(
name="name", type="STRING", description="The name of the person"
)
],
),
NodeType(
label="ORGANIZATION",
description="A structured group of people with a common purpose.",
properties=[
PropertyType(
name="name", type="STRING", description="The name of the organization"
)
],
),
]
relationship_types = [
RelationshipType(
label="EMPLOYED_BY", description="Indicates employment relationship."
),
]
patterns = [
("PERSON", "EMPLOYED_BY", "ORGANIZATION"),
]
pipe = Pipeline()
schema_builder = SchemaBuilder()
pipe.add_component(schema_builder, "schema_builder")
pipe_inputs = {
"schema": {
"node_types": node_types,
"relationship_types": relationship_types,
"patterns": patterns,
},
...
}
pipe.run(pipe_inputs)
"""
@staticmethod
def create_schema_model(
node_types: Sequence[NodeType],
relationship_types: Optional[Sequence[RelationshipType]] = None,
patterns: Optional[Sequence[Tuple[str, str, str]]] = None,
**kwargs: Any,
) -> GraphSchema:
"""
Creates a GraphSchema object from Lists of Entity and Relation objects
and a Dictionary defining potential relationships.
Args:
node_types (Sequence[NodeType]): List or tuple of NodeType objects.
relationship_types (Optional[Sequence[RelationshipType]]): List or tuple of RelationshipType objects.
patterns (Optional[Sequence[Tuple[str, str, str]]]): List or tuples of triplets: (source_entity_label, relation_label, target_entity_label).
kwargs: other arguments passed to GraphSchema validator.
Returns:
GraphSchema: A configured schema object.
"""
try:
return GraphSchema.model_validate(
dict(
node_types=node_types,
relationship_types=relationship_types or (),
patterns=patterns or (),
**kwargs,
)
)
except ValidationError as e:
raise SchemaValidationError() from e
[docs]
@validate_call
async def run(
self,
node_types: Sequence[NodeType],
relationship_types: Optional[Sequence[RelationshipType]] = None,
patterns: Optional[Sequence[Tuple[str, str, str]]] = None,
**kwargs: Any,
) -> GraphSchema:
"""
Asynchronously constructs and returns a GraphSchema object.
Args:
node_types (Sequence[NodeType]): Sequence of NodeType objects.
relationship_types (Sequence[RelationshipType]): Sequence of RelationshipType objects.
patterns (Optional[Sequence[Tuple[str, str, str]]]): Sequence of triplets: (source_entity_label, relation_label, target_entity_label).
Returns:
GraphSchema: A configured schema object, constructed asynchronously.
"""
return self.create_schema_model(
node_types,
relationship_types,
patterns,
**kwargs,
)
class SchemaFromExistingGraphExtractor(BaseSchemaBuilder):
"""A class to build a GraphSchema object from an existing graph.
Uses the get_structured_schema function to extract existing node labels,
relationship types, properties and existence constraints.
By default, the built schema does not allow any additional item (property,
node label, relationship type or pattern).
Args:
driver (neo4j.Driver): connection to the neo4j database.
additional_properties (bool, default False): see GraphSchema
additional_node_types (bool, default False): see GraphSchema
additional_relationship_types (bool, default False): see GraphSchema:
additional_patterns (bool, default False): see GraphSchema:
neo4j_database (Optional | str): name of the neo4j database to use
"""
def __init__(
self,
driver: neo4j.Driver,
additional_properties: bool | None = None,
additional_node_types: bool | None = None,
additional_relationship_types: bool | None = None,
additional_patterns: bool | None = None,
neo4j_database: Optional[str] = None,
) -> None:
self.driver = driver
self.database = neo4j_database
self.additional_properties = additional_properties
self.additional_node_types = additional_node_types
self.additional_relationship_types = additional_relationship_types
self.additional_patterns = additional_patterns
@staticmethod
def _extract_required_properties(
structured_schema: dict[str, Any],
) -> list[tuple[str, str]]:
"""Extract a list of (node label (or rel type), property name) for which
an "EXISTENCE" or "KEY" constraint is defined in the DB.
Args:
structured_schema (dict[str, Any]): the result of the `get_structured_schema()` function.
Returns:
list of tuples of (node label (or rel type), property name)
"""
schema_metadata = structured_schema.get("metadata", {})
existence_constraint = [] # list of (node label, property name)
for constraint in schema_metadata.get("constraint", []):
if constraint["type"] in (
"NODE_PROPERTY_EXISTENCE",
"NODE_KEY",
"RELATIONSHIP_PROPERTY_EXISTENCE",
"RELATIONSHIP_KEY",
):
properties = constraint["properties"]
labels = constraint["labelsOrTypes"]
# note: existence constraint only apply to a single property
# and a single label
prop = properties[0]
lab = labels[0]
existence_constraint.append((lab, prop))
return existence_constraint
def _to_schema_entity_dict(
self,
key: str,
property_dict: list[dict[str, Any]],
existence_constraint: list[tuple[str, str]],
) -> dict[str, Any]:
entity_dict: dict[str, Any] = {
"label": key,
"properties": [
{
"name": p["property"],
"type": p["type"],
"required": (key, p["property"]) in existence_constraint,
}
for p in property_dict
],
}
if self.additional_properties:
entity_dict["additional_properties"] = self.additional_properties
return entity_dict
async def run(self, *args: Any, **kwargs: Any) -> GraphSchema:
structured_schema = get_structured_schema(self.driver, database=self.database)
existence_constraint = self._extract_required_properties(structured_schema)
# node label with properties
node_labels = set(structured_schema["node_props"].keys())
node_types = [
self._to_schema_entity_dict(key, properties, existence_constraint)
for key, properties in structured_schema["node_props"].items()
]
# relationships with properties
rel_labels = set(structured_schema["rel_props"].keys())
relationship_types = [
self._to_schema_entity_dict(key, properties, existence_constraint)
for key, properties in structured_schema["rel_props"].items()
]
patterns = [
(s["start"], s["type"], s["end"])
for s in structured_schema["relationships"]
]
# deal with nodes and relationships without properties
for source, rel, target in patterns:
if source not in node_labels:
if self.additional_properties is False:
logger.warning(
f"SCHEMA: found node label {source} without property and additional_properties=False: this node label will always be pruned!"
)
node_labels.add(source)
node_types.append(
{
"label": source,
}
)
if target not in node_labels:
if self.additional_properties is False:
logger.warning(
f"SCHEMA: found node label {target} without property and additional_properties=False: this node label will always be pruned!"
)
node_labels.add(target)
node_types.append(
{
"label": target,
}
)
if rel not in rel_labels:
rel_labels.add(rel)
relationship_types.append(
{
"label": rel,
}
)
schema_dict: dict[str, Any] = {
"node_types": node_types,
"relationship_types": relationship_types,
"patterns": patterns,
}
if self.additional_node_types is not None:
schema_dict["additional_node_types"] = self.additional_node_types
if self.additional_relationship_types is not None:
schema_dict["additional_relationship_types"] = (
self.additional_relationship_types
)
if self.additional_patterns is not None:
schema_dict["additional_patterns"] = self.additional_patterns
return GraphSchema.model_validate(
schema_dict,
)